On the maximal distance of spanning trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Distance defined by spanning trees in graphs

For a spanning tree T in a nontrivial connected graph G and for vertices u and v inG, there exists a unique u−v path u = u0, u1, u2, . . ., uk = v in T . A u− v T -path in G is a u− v path u = v0, v1, . . . , vl = v in G that is a subsequence of the sequence u = u0, u1, u2, . . . , uk = v. A u− v T -path of minimum length is a u− v T -geodesic in G. The T distance dG|T (u, v) from u to v in G i...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

On encodings of spanning trees

Deo and Micikevicius recently gave a new bijection for spanning trees of complete bipartite graphs. In this paper we devise a generalization of Deo and Micikevicius’s method, which is also a modification of Olah’s method for encoding the spanning trees of any complete multipartite graph K(n1, . . . , nr). We also give a bijection between the spanning trees of a planar graph and those of any of ...

متن کامل

Spanning Trees with Many Leaves and Average Distance

In this paper we prove several new lower bounds on the maximum number of leaves of a spanning tree of a graph related to its order, independence number, local independence number, and the maximum order of a bipartite subgraph. These new lower bounds were conjectured by the program Graffiti.pc, a variant of the program Graffiti. We use two of these results to give two partial resolutions of conj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory

سال: 1968

ISSN: 0021-9800

DOI: 10.1016/s0021-9800(68)80014-6